Login
Register
This website uses cookies to ensure you get the best experience on our website.
More Info Got It
Android app on Google Play
IOS app on App Store
Kindle app on Amazon

Small
Large
Printer
PDF
Download
Word
Download
Submit
Video
Upload Movie
Save
Add to List
Facebook
Twitter
Pinterest
That's What Honky Tonks Are For
( 7 Votes)
Login or Register to Vote
Count: 
32
Wall: 
4
Level: 
Improver
Choreographer: 
Wil Bos (September 2019)
Music: 
"That's What Honky Tonks Are For" by Brian Odle
Intro: 16 counts

Step, Touch, Step Together, Twist R-L-R, ½ Rumba Box, ½ Change Turn
1&2&RF. Step R - LF. Touch beside RF - LF. Step L - RF. Close beside LF
3&4RF & LF. Swivel heels R - RF & LF. Swivel toes R - RF & LF. Swivel heels R
5&6LF. Step to L - RF. Close beside LF – LF. Step fwd
7&8RF. Step fwd – LF & RF make ½ turn L – RF. Step fwd (6:00)

Step, Touch, Step Touch, ½ Rumba Box, Chasse ¼ R, Step Fwd ¼ turn R, Cross Over
1&2&LF. Step L - RF. Touch beside LF - RF. Step R - LF. Touch beside RF
3&4LF. Step L - RF. Close beside LF - RF. Step fwd
5&6RF. Step to R - LF. Close beside RF – RF. 1/4 Turn R step fwd (9:00)
7&8LF. Step fwd – RF & LF. Make ¼ turn R – LF. Cross over RF (12:00) (Restart wall 3)

Toe Struts x 2, ¼ Monterey Turn, Touch, Touch, Step R, Rock Step, ¼ Step Fwd
1&2&RF. Step on Toe to R - RF. Drop heel - LF. Step on Toe across RF - LF. Drop heel
3&4&RF. Point toe R - RF. ¼ Turn R step beside LF - LF. Point toe L – LF. Close Beside RF (3:00)
5&6RF. Touch to right side - RF. Touch beside LF - RF. Make a big step R
7&8LF. Rock step behind RF – RF. Recover weight – LF. 1/4 Turn L step fwd (12:00)

Change Turn ½ L, Run x3 ¼ L, Mambo Step, Coaster Step Cross
1&2RF. Step fwd – LF & RF make ½ turn L – RF. Step fwd (6:00)
3&4Run L- R - L make total ¼ turn Left (3:00)
5&6RF. Rock step fwd – LF. Recover – RF. Step back
7&8LF. Step back – RF. Close beside LF – LF. Cross over RF

Restart in wall # after 16 counts

Start Again

viewcomments
0 Comments
Zoom Zoom
Close Close
Movie Here
Save to list....
Close Close
List Here